Stanford Social Entrepreneurship Startup LED Lighting Project

Matthew Scott MBA, Graduate School of Business

Agenda

Setting the context

- The problem
- Why are LEDs the answer?
- How can we achieve sustainable change?

Country Highlights

- INDIA
- CHINA
- MEXICO

Design Review

- Product Design Process
- Prototypes

Next Steps

India Pilot, Light Up the World and SES Project

Fuel-Based Lighting causes many problems

- Leads to Health Problems
- Limits Education
- Environmental Pollution
- Limits Productivity

LEDs are a more efficient technology

Total Light Output per \$

Useful Light Output per \$

LEDs Rapid Advancement and Low Power

- Rapidly Advancing Technology
 3.8 L/W in 2001 to 30 L/W in 2003
- Durable
- No CO₂ emissions
- No naked flame or smoke

Sell LEDs through market for lasting impact

Stanford Social Entrepreneurship Startup LED Lighting Project

Country Deep Dive: INDIA

Introduction

India: one of three country teams

Current Need

Proposed Solution

The Market

- 150-300 million people lack electricity
- 80,000 rural villages off the electric power grid
- Unreliable electricity supplies (unavailable 6 – 7 hours per day)

The Market

- 150-300 million people lack electricity
- 80,000 rural villages off the electric power grid
- Unreliable electricity supplies (unavailable 6 – 7 hours per day)

User Feedback Process

Prototypes and Surveys in the field:

- NGOs
- Rural Villagers
- Rural Schools
- IIT University Lab

Advisors:

- NGOs
- For-profit companies
- Manufacturers
- Rural micro-finance banks
- US and Indian governments

Example Feedback: Kerosene Replacer

Kutarbhai Nayak

- 7 family members
- Agricultural worker in rural Gujarat

Example Feedback: Kerosene Replacer

- Requires light 30 min. in morning and 2-3 hrs. at night
- Uses 4 liters of kerosene/mo at Rs. 13 (\$0.26) /liter

"Yellow light of kerosene is inconvenient"

Example Feedback: Light Upgrader

- 11 family members
- Agricultural worker in semirural Gujarat

Example Feedback: Light Upgrader

- Connected to unreliable electrical grid (off 6-7 hrs/day)
- Uses 5 liters of kerosene/mo as a backup light at Rs. 15 (\$0.30) /liter
- Uses flashlights outside the home, buys 3 1.5 w batteries/mo at Rs. 8 (\$0.16)/cell

Indian target segments

'Kerosene Replacer'

- Rural off-grid village
- Earns Rs 15,000 30,000 (\$300-600) /year
- Spends Rs 35-60 (\$0.70-1.20)/mo on kerosene (2-4% income)

'Light Upgrader'

- Semi-rural dweller (on or off grid)
- Earns Rs 30,000-100,000 (\$600-2000)/year
- Spends Rs 75-200 (\$1.50-4.00/mo on kerosene (2-4% income)

Maximum upfront price: \$7 - \$10 (Rs 350-500) Max upfront price: \$20 (Rs 1000)

The Competition: Kerosene

Lighting Sources in West Bengal, 24
Parganas region

Solution must replace kerosene and provide 2-4 hours of light per night

Our Proposed Solution: User Benefits

- Cost
- Health
- Education
- Income Generation

Key Assumptions Tested

- Human vs. solar power
- Community charging
- Government relationship
- Microfinance
- Manufacturing foreign vs. domestic

Definition of product concepts

Summary

Unanswered Questions:

- Ability and willingness of customers to pay?
- What is the optimal manufacturing and distribution strategy?
- How to develop a rural marketing strategy?

Next Steps:

- Summer field work
- Pilot Project

Stanford Social Entrepreneurship Startup LED Lighting Project

CHINA

Ashley Manning MBA, Graduate School of Business

China Roadmap

Key lessons that drove business decisions

Target market

Business Model

CHINA: Entrepreneurship is Everywhere

...and local markets are the center of commerce

Credit is informal

- NGO activity is limited and micro-credit is in its infancy
- Women form groups of 20 and everyone contributes 200 Yuan per month to a different member of the group.
- Retailers often purchase goods on credit from suppliers
- Chinese government more likely to regulate markets NGOs

Lighting market is highly fragmented

- Homes with electricity do not use it due to cost and reliability
- Public Spaces: Coal and natural gas
- Households: Wood, gas, coal, biomass

Target Market Progression

Primary: market vendors in rural, western China

GOAL: Nomads / Rural poor

Secondary: cottage industry

Night Traders Lighting Needs

- Brightness and quality not size
- Save money compared to current lighting solutions
- Personal system (not community model)
- Convenient light for multiple uses in the market and at home
- Can be plugged into the grid

The Business Case

- Too much to tell! Please come talk to us about:
 - Distribution Model
 - Keys to breaking even in China
 - Pilot project recommendations

Stanford Social Entrepreneurship Startup LED Lighting Project

MEXICO

Darren Johnston MBA, Graduate School of Business

Mexico Presentation

- The Opportunity
- Special Considerations
- The Offering
- Implementation Strategy

The Opportunity

Goal: Provide lighting for non-electrified households

Market: 1 million non-electrified households in Mexico.

69% of non-electrified households are in the south (darker colored states)

Rural Mexicans currently spend \$6 per month on batteries

Special Considerations

Research Revelations

- Solar- not appropriate
- Rechargeable solution- not desirable
- Entrepreneurship model- tough sell
- Cost- most important factor

Product Decisions

Decided on an ambient LED lamp that would use traditional batteries

The Offering

LED lamp replaces a household's flashlight.

6x savings in batteries purchased No behavior change 1-2 month payback period on investment

End-users will achieve a savings of \$60 per year, which is 6.6% of the yearly expenses of the poorest families in Mexico

Implementation Strategy

Organization: Social venture for-profit company

Customer Mix:

Rural- Target Customer

Urban- Occasional flashlight user

- Brings quality perception up
- Helps subsidize growth

Marketing: non-traditional approach

Distribution: utilize <u>existing</u> infrastructure

Stanford Social Entrepreneurship Startup LED Lighting Project

Design Overview

Scott Cannon
MS, Electrical Engineering

Design Goal:

To design a cost-effective and efficient lighting solution for the world's poorest people.

- More affordable than kerosene over time
- Greater light output than existing solutions
- Environmentally friendly and attractive to users

The Team:

- 12 Stanford product designers/engineers
- IDEO coaches
- Industry Advisors

Discovery Driven Design

- 1) Develop assumptions
 - Empathy: A deep understanding for users
- 2) Test assumptions with prototypes
 - Iterations drive design decisions
 - Technical research reinforces decisions
- 3) Product design iterations
 - Solutions that address customer needs
 - Design for manufacturing

Design Decisions

- Power Generation
- Power Storage
- Light and Optics
- Driver Circuitry
- Housing

Power Generation

Solar power fits our Asian Market

- -Lowest cost/watt for family (\$2.50/watt)
- -Small (8x11.5cm for 1.2W single-crystalline silicon)
- -Low maintenance cost

Power Storage

AA NiMH Batteries in Asia

- -High charge density, long cycle life (~500+ cycles)
- -Environmentally friendly and compact

D Alkalines in Mexico

-Alkaline widely available in Mexico

LED Technology and Optics

LEDs fit the needs of our target market:

- Durable and Reliable
- Low power requirements
- More efficient than most other options
- Longest Life
- Actively developing technology

Driver Circuitry

Microprocessor controlled circuit

- Minimal components, low cost
- Regulates LED and battery
- 90% energy efficient

Housing

Plastic or stamped metal

- Stamped sheet metal improves heat dissipation
- Injection molded plastic good at large quantities

Stanford Social Entrepreneurship Startup LED Lighting Project

Final Designs

Sally Madsen
MS, Mechanical Engineering

Design Parameters

• Form - size, weight

• **Usage** - hanging, sitting on surface, portable

Light output - ambient, task

Prototype: "El Cheapo"

Point of view: Cheapest design with power generation

Intended users: Any poor people w/o electricity

Prototype: "El Cheapo"

- Task lighting
- 1 0.6W PV panel
- 1 AA NiMH battery
- 3.1W LEDs
- Injected plastic housing
- Estimated cost of goods \$7.30

Prototype: China and India

Point of view: Hanging light with power generation, adjustable focus **Intended users:** Night market vendors, cottage industry workers, families

Prototype: China and India

- Task and ambient lighting adjustable optics
- 1 1.2W PV panel, 45 degree angle to sun
- Optional charger from grid
- 2 AA NiMH batteries
- 1 1W LED
- Injected plastic housing
- Estimated cost of goods \$10.40

Prototype: Mexico

Point of view: Hanging light using 1/6 of current battery life

Intended users: Families

Prototype: Mexico

- Ambient lighting
- 2 D alkaline batteries
- 1 1W LED
- Injected plastic housing
- Estimated cost of goods \$8.25

Stanford Social Entrepreneurship Startup LED Lighting Project

NEXT STEPS

Matthew Scott MBA, Graduate School of Business

NEXT STEPS: Funding to continue

Capacity Building for LUTW

Longer-term Vision for SES

ENGAGEMENT IN SOCIAL ENTREPRENEURSHIP

Immediate Need: Scaling up for Global Impact

